aus Nature https://www.nature.com/articles/s41467-022-32652-y#Sec1
Wasserstoffproduktion aus der Luft (Hydrogen production from the air)
Grüner Wasserstoff, der durch Wasserspalten unter Verwendung erneuerbarer Energien erzeugt wird, ist der vielversprechendste Energieträger der kohlenstoffarmen Wirtschaft. Das geografische Missverhältnis zwischen den Verteilung erneuerbarer Energien und der Verfügbarkeit von Süßwasser ist jedoch eine erhebliche Herausforderung für die Produktion. Hier zeigen wir eine Methode zur direkten Wasserstoffproduktion aus der Luft, nämlich in situ erfasstes Süßwasser aus der Atmosphäre unter Verwendung hygroskopischer Elektrolyte und Elektrolyse, die durch Solar oder Wind mit einer Stromdichte bis zu 574 mA / cm² angetrieben werden. Ein solcher Prototyp wurde für 12 aufeinander folgende Tage mit einer stabilen Leistung bei einer Faraday-Effizienz von rund 95% festgelegt und betrieben. Dieses sogenannte DAE-Modul (Direct Air Electrolysis - Direktluftelektrolyse) kann unter einer knochentrockenen Umgebung mit einer relativen Luftfeuchtigkeit von minimal 4% funktionieren, die Probleme mit der Wasserversorgung überwinden und nachhaltig umweltfreundliche Auswirkungen auf die Umwelt erzeugen. Die DAE-Module können leicht skaliert werden, um Wasserstoff für die Fernbedienung, in semiariden und verteilten Bereichen bereitzustellen.
Im folgenden wird aus diesem Artikel auszugsweise zitiert.
Abb. 1: Atlas der Überlagerung des Wasserrisikos und der erneuerbaren Energien.
a Wasserrisiko und Sonnenenergiepotential; b Wasserrisiko und Windenergiepotential (ohne Küstengebiete). Separate Karten sind in der ergänzenden Abb. 1–3 erhältlich. Quelle: World Resources Institute (WRI) Aqueduct42, abgerufen unter [04.2021], aqueduct.wri.org; World Bank Group43, abgerufen unter [04.2021], https://globalsolaratlas.info; Technische Universität Dänemark44, Zugriff unter [04.2021], https: //globalwindatlas.info - Creative Commons Attribution International 4.0 Lizenz.
[---]
In dieser Studie bestätigen wir, dass Feuchtigkeit in der Luft direkt zur Wasserstoffproduktion durch Elektrolyse verwendet werden kann Die Luftfeuchtigkeit befindet sich in einem dynamischen Gleichgewicht mit der Aqua-Sphäre. Zum Beispiel liegt auch in der Sahelwüste die durchschnittliche relative Luftfeuchtigkeit (R.H.) bei etwa 20%, und die durchschnittliche Tagesluftfeuchtigkeit in der Uluru (Ayers Rock) in der zentralen Wüste Australiens beträgt 21%. In Anbetracht von fließfähigen Materialien wie Kaliumhydroxid, Schwefelsäure und Propylenglycol können wir hier ein Verfahren zur Herstellung von Wasserstoff mit hoher Reinheit vorstellen durch Elektrolysierung der in situ-hygroskopischer Elektrolyte, die der Luft ausgesetzt sind, und Wasserdampf absorbieren.
Der Elektrolysator arbeitet stetig in einem weiten Bereich der Luftfeuchte, der bis zu 4% liegen kann, und erzeugt während mehr als 12 aufeinander folgenden Tagen mit einer Faraday-Effizienz von rund 95%, ohne dass flüssiges Wasser hinzugefügt werden muss. Es wurde ein solarbetriebener Prototyp mit fünf parallelen Elektrolysatoren entwickelt, um im Freien zu arbeiten, wodurch eine durchschnittliche Wasserstofferzeugungsrate von 745 l H2 /Tag*m² an der Kathode erreicht wird. Auch wurde für die H2-Produktion ein windgetriebener Prototyp demonstriert. Diese Arbeit eröffnet einen nachhaltigen Weg zur Herstellung von grünem Wasserstoff, ohne flüssiges Wasser zu verbrauchen.
[---]
Der Aufbau des Elektrolyseurs ist in folgendem Bild erkennbar:
Abb. 2.: a Eine schematische Darstellung des DAE-Moduls mit einer Wassergewinnungseinheit aus porösem Medium, das mit der hygroskopischen ionischen Lösung getränkt ist. b Eine schematische Darstellung des Querschnitts des DAE-Moduls, die zeigt, dass die Elektroden von der Luftzufuhr isoliert sind und das absorbierte Wasser durch Kapillaren des Schwamms zur Elektrode transportiert wird. c Wasseraufnahme im Gleichgewicht von hygroskopischen Lösungen bei unterschiedlicher Luftfeuchte. d I-V-Kurven für DAE-Module mit Pt- oder Ni-Elektroden, die sandwichartig mit KOH-Elektrolyt (im Gleichgewicht mit 15 % und 60 % relativer Luftfeuchtigkeit bei 20 °C) in einem Melaminschwamm getränkt sind. e Wirkung von Schwammmaterialien auf die I-V-Leistung von DAE-Modulen unter Verwendung von H2SO4-Elektrolyt im Gleichgewicht mit 30 % relativer Luftfeuchtigkeit bei 25 °C. Der Einschub zeigt das optische Mikrobild für den Glasschaum. Quelldaten werden als Quelldatendatei bereitgestellt.
[...]
Design des "Direct Air Electrolysis" (DAE)-Moduls zur Wasserstofferzeugung
Die Wasserstofferzeugung aus der Luft wurde durch unser DAE-Modul realisiert. Wie in der Sandwichstruktur in Abb. 2a, b gezeigt, besteht dieses Modul aus einer Wassersammeleinheit in der Mitte und Elektroden auf beiden Seiten, gepaart mit Gaskollektoren. Das Modul ist mit einer Energieversorgung integriert, beispielsweise einem Solarpaneel, einer Windkraftanlage oder anderen erneuerbaren Generatoren. Wichtig ist, dass die Wassergewinnungseinheit auch als Reservoir für den Elektrolyten dient. Poröses Medium wie Melaminschwamm, gesinterter Glasschaum wird mit zerfließender ionischer Substanz getränkt, um Feuchtigkeit aus der Luft über die freiliegenden Oberflächen zu absorbieren. Das eingefangene Wasser in der flüssigen Phase wird durch Diffusion auf die Oberflächen der Elektroden übertragen und anschließend vor Ort in Wasserstoff und Sauerstoff gespalten, die getrennt als reines Gas gesammelt werden, da beide Elektroden von Luft isoliert sind (ergänzende Abb. 4–6). . Das Reservoir zwischen der Endplatte und dem porösen Schaum (ergänzende Abb. 5b) wirkt als Luftbarriere und als Puffer für das Volumen der ionischen Lösung bei übermäßigen Schwankungen der Luftfeuchtigkeit. Dieses Reservoir verhindert das Überlaufen des Elektrolyseurs aus dem DAE-Modul oder das Austrocknen des benetzten Schaums. Wenn Glasschaum als poröses Medium gewählt wird, wird Quarzwolle dicht zwischen den Schaum und die Elektroden gepackt, um die Konnektivität der wässrigen Phase sicherzustellen (ergänzende Abb. 7). Die porösen Medien sorgen auch für die freie Bewegung des Elektrolyten in den Kapillaren des Schaums (Ergänzende Abb. 8, Ergänzender Film 1). Der mit ionischen Lösungen gefüllte Schaum bildet eine physikalische Barriere, die Wasserstoff, Sauerstoff und Luft effektiv von jeglicher Vermischung isoliert.
[...]