Thomas Schwander, Lennart Schada von Borzyskowski, Simon Burgener,
Niña Socorro Cortina, Tobias J. Erb
Abstract:
Carbon dioxide (CO 2 ) is an important carbon feedstock for a future green economy.This requires the development of efficient strategies for its conversion into multicarbon compounds. We describe a synthetic cycle for the continuous fixation of CO 2 in vitro. The crotonyl–coenzyme A (CoA)/ethylmalonyl-CoA/hydroxybutyryl-CoA (CETCH) cycle is a reaction network of 17 enzymes that converts CO 2 into organic molecules at a rate of 5 nanomoles of CO 2 per minute per milligram of protein. The CETCH cycle was drafted by metabolic retrosynthesis, established with enzymes originating from nine different organisms of all three domains of life, and optimized in several rounds by enzyme engineering and metabolic proofreading. The CETCH cycle adds a seventh, synthetic alternative to the six naturally evolved CO 2 fixation pathways, thereby opening the way for in vitro and in vivo applications.
Inzwischen haben neue Versuche ergeben, dass dieser CETCH-Zyklus eine 20-fache Wirkung gegenüber der natürlichen Photosynthese hat. Allerdings ist dieser Prozess noch im Stadium des "Labormusters" (2021).