Dienstag, 11. Januar 2022

La Edad del Universo y el Big Bang (Hipótesis del Big Bang)

Esta entrada de blog proviene de varios blogs en inglés,
por ejemplo, https://nineplanets.org/questions/how-old-is-the-universe/
http://spiff.rit.edu/classes/phys240/lectures/bb/bb.html
El artículo consta de dos secciones:
1ra sección en alemán (https://ibk-klima.blogspot.com/2022/01/die-zu-beobachtenden-grundlagen-des-big.html)
2da sección en Español (esta seccion)

General

Si uno pudiera calcular la edad de todas las personas que alguna vez han vivido en la tierra, ni siquiera se acercaría a la edad del universo. Uno de los temas más discutidos en astronomía es la edad del universo, y cada vez que nos acercamos a un número estimado surge un nuevo descubrimiento que lo supera.

Pero, ¿cuántos años tiene el universo? ¿O al menos en general? Muchos creen que la edad de nuestro universo es de 13.800 millones de años. Algunos creen que es aún más antiguo, mientras que otros piensan que es más joven.

Sin embargo, la mayoría de los astrónomos están de acuerdo en que nuestro universo tiene al menos 13.800 millones de años. Sin embargo, no espere que este número dure mucho, ya que todavía tenemos mucho más que aprender.

¿Cómo sabemos que el universo tiene 13.800 millones de años?

 
No lo sabemos, o al menos es solo un número pasajero. Los astrónomos calculan la edad del universo de varias maneras. Una de las formas más populares de calcular la edad de nuestro universo es encontrar las estrellas o galaxias más antiguas, tal vez incluso planetas.

Por ejemplo, el planeta más antiguo jamás descubierto es Matusalén, que tiene alrededor de 14.500 millones de años, u 800 millones de años. Esto es una paradoja ya que sería más antiguo que nuestro universo. Su estrella es claramente incluso más antigua que este planeta, ya que las estrellas se forman primero y los planetas después.

Una de las galaxias más antiguas jamás descubiertas es GN-z11, que se encuentra a 32 000 millones de años luz de distancia y se estima que tiene al menos 13 400 millones de años.

Se cree que se formó poco después del Big Bang. Los astrónomos calculan la edad del universo analizando las distancias y velocidades radiales de otras galaxias. También se tiene en cuenta el fondo cósmico de microondas, ya que es una reliquia de la radiación del Big Bang.

Todo se calcula en base a eventos rebobinados hasta el Big Bang. Sin embargo, una cosa es segura: nada es seguro acerca de nuestro universo. Sabrás a lo que me refiero si sigues leyendo.

¿Puede el universo tener más de 14 mil millones de años?

El universo bien podría tener más de 14 mil millones de años, y deberíamos dejar de limitarlo cada vez que se descubre algo nuevo. Tome la Gran Muralla de Hércules-Corona Borealis, por ejemplo.

Esta es una de las estructuras más grandes descubiertas en nuestro universo. Tiene más de 10 mil millones de años luz de longitud y está a más de 9 mil millones de años luz de nosotros.

El universo observable tiene 93 mil millones de años luz de diámetro. La existencia de la Gran Muralla de Hércules-Corona Borealis, su tamaño, es bastante controvertida. 

Esto se debe a que es demasiado grande para haberse formado en el momento en que su luz nos alcanzó, y un día bien puede haber evidencia de que el universo es incluso más antiguo de lo que pensamos.

Esta gran estructura seguirá siendo un misterio para los científicos durante mucho tiempo. Algunos incluso dudan de su existencia debido a su naturaleza paradójica.

Pero incluso si descartamos la existencia de la Gran Muralla, muchos científicos están de acuerdo en que nuestro universo no debería tener más de 14.500 millones de años. Este es el límite de la edad del universo, pero aún está por verse.

¿Qué es más antiguo que el universo?

En teoría, la estrella HD 140283 o Matusalén parece más antigua que nuestro universo, pero eso sería imposible. Es un error de cálculo o un error en la edad estimada de nuestro universo.

No importa cómo lo mires, nada debería ser más antiguo que nuestro universo, excepto tal vez algo que sucedió antes del Big Bang. No sabemos exactamente qué fue antes del Big Bang, pero sea lo que sea, al menos en teoría podríamos pensar que era un poco más antiguo que nuestro universo.

El Big Bang, el evento que creó nuestro universo, fue desencadenado por la existencia de una singularidad inicial que, en sí misma, podría considerarse más antigua que nuestro universo.

Otra cosa que podría ser más antigua que nuestro universo sería la existencia de otro universo. Si alguna vez descubrimos que existen otros universos fuera del nuestro, podría ser más joven o más viejo que nuestro universo.

Esto se debe a que es demasiado grande para formarse en el momento en que su luz nos alcanzó, y un día bien puede haber evidencia de que el universo es incluso más antiguo de lo que pensamos.

Esta gran estructura seguirá siendo un misterio para los científicos durante mucho tiempo. Algunos incluso dudan de su existencia debido a su naturaleza paradójica.

Pero incluso si descartamos la existencia de la Gran Muralla, muchos científicos están de acuerdo en que nuestro universo no debería tener más de 14.500 millones de años. Este es el límite de la edad del universo, pero aún está por verso.

Pregunta secundaria: ¿Qué edad tiene la tierra en comparación con el universo?

Nuestra tierra ni siquiera es el planeta más antiguo de nuestro sistema solar, ese sería Júpiter. La edad de la tierra se estima en 4540 millones de años, por lo que el universo en sí tiene en promedio unas tres veces la edad de nuestra tierra, pero solo si el universo tiene en realidad 13800 millones de años.

Nuestra galaxia, la Vía Láctea, podría ser una mejor comparación ya que tiene 13.510 millones de años. Se estima que uno de los agujeros negros más antiguos jamás descubiertos tiene 13.800 millones de años. Se originó alrededor de 690 millones de años después del Big Bang.

Bases observadas

Las siguientes observaciones o mediciones de propiedades astronómicas sugieren un origen puntual del universo observado (modelo del big bang):

1. Cuanto más lejos está una galaxia de nosotros, más rápido se mueve (medido por el corrimiento al rojo de las líneas espectrales

2. Una observación química: el universo en su totalidad se compone principalmente de átomos de H y He, todos los demás elementos son insignificantemente pequeños. Los átomos de H son mayoritarios...

3. El fondo cósmico de microondas: No importa dónde miremos en el universo, vemos ondas de radio que se parecen a las emitidas por un cuerpo negro a unos 2,7 grados sobre el cero absoluto. Hay variaciones minúsculas (parte en 10.000) en el brillo de esta radiación en una escala de un grado.

Fundamentos del modelo del big bang

El Big Bang se basa en tres principios fundamentales:


1. El universo solía estar muy caliente
2. El universo solía ser muy denso
3. el universo se expande (por eso ya no es tan caliente ni tan denso)

Debes saber que este modelo básico del Big Bang no dice NADA sobre las siguientes preguntas:

  •      Se colapsará el universo de nuevo o se expandirá para siempre?
  •      La habitación es curva o plana?
  •      cuantos años tiene el universo
  •      Cuál es la densidad de la materia en el universo?
  •      Qué pasa con la materia oscura?
  •      Existe una misteriosa fuerza "repulsiva" a gran escala?
  •      Cómo surgieron las galaxias?

https://upload.wikimedia.org/wikipedia/commons/thumb/6/6f/CMB_Timeline300_no_WMAP.jpg/660px-CMB_Timeline300_no_WMAP.jpg


El universo se está expandiendo, o viceversa: hace unos 13.770 millones de años tenía casi forma de punto (https://en.wikipedia.org/wiki/Chronology_of_the_universe).
Nuestra comprensión de las leyes de la naturaleza nos permite rastrear el estado físico del universo hasta un punto en el que la densidad y la temperatura eran REALMENTE altas. Además, no sabemos exactamente cómo se comportan la materia y la radiación. Llamemos a este momento el punto de partida. No significa que el universo "comenzó" en ese momento, solo significa que no sabemos qué sucedió antes de ese momento.

Nucleosíntesis del Big Bang

Uno de los mayores éxitos de la teoría del Big Bang es su explicación de la composición química del universo. Recuerda que el universo se compone principalmente de hidrógeno y helio, con cantidades muy pequeñas de elementos pesados. ¿Qué tiene esto que ver con el Big Bang?

Bueno, hace mucho tiempo el universo era caliente y denso. Cuando la temperatura es lo suficientemente alta (unos pocos miles de grados), los átomos pierden todos sus electrones; llamamos a este estado de la materia, una mezcla de núcleos y electrones, un plasma completamente ionizado. Si la temperatura es aún más alta (millones de grados), entonces los núcleos se desintegran en partículas elementales y se obtiene una "sopa" de partículas elementales:

  •      protones
  •      neutrones
  •      electrones

Cuando la "sopa" es muy densa, estas partículas suelen chocar entre sí. Ocasionalmente, grupos de protones y neutrones se unen para formar núcleos más fácilmente elementos... pero bajo presiones y temperaturas extremadamente altas, los núcleos se rompen por colisiones posteriores. La teoría del Big Bang postula que el universo entero alguna vez estuvo tan caliente que estaba lleno de esta sopa de protones, neutrones y electrones.

Pero la teoría del Big Bang dice que a medida que el universo se expandía, tanto la densidad como la temperatura disminuían. A medida que la temperatura y la densidad disminuyeron, las colisiones entre partículas se volvieron menos violentas e infrecuentes. Hubo una breve "ventana de oportunidad" en la que los protones y los neutrones podrían chocar lo suficientemente fuerte como para unirse y formar núcleos ligeros, pero no sufrir tantas colisiones consecutivas como para destruir los núcleos. Esta "ventana" apareció unos tres minutos después del punto de inicio y tomó un poco menos de un minuto.

¿Qué núcleos se formarían en estas condiciones? Los experimentos con aceleradores de partículas nos han demostrado que la mayoría de los núcleos posibles son inestables (unstable), es decir, se abren solos, o son frágiles (fragile), lo que significa que se rompen fácilmente en colisiones. 

El helio (la variedad común de 2 protones y 2 neutrones) es, con mucho, el núcleo compuesto más estable y robusto. El deuterio (un protón y un neutrón) se destruye fácilmente, al igual que el helio-3 (2 protones, un neutrón).

Entonces parece que esta fase de plasma caliente y denso generaría mucho helio. ¿Podría producir también otros elementos más pesados?

Resulta que ninguno de los núcleos más pesados, formados fácilmente por la colisión de partículas individuales con núcleos de helio o núcleos de helio, es estable o robusto. Es probable que casi todos los núcleos más pesados ​​que el helio sean destruidos por colisiones posteriores. El único núcleo más pesado que podría sobrevivir es el litio-7 (3 protones y 4 neutrones), pero requiere un núcleo de helio para colisionar con otras 2 o 3 partículas al mismo tiempo, lo cual no es muy probable.
 
Los modelos detallados de la nucleosíntesis del Big Bang predicen que la breve "ventana de oportunidad" duró solo uno o dos minutos. Después de eso, unos tres minutos y medio después del punto de partida, la temperatura y la densidad cayeron tan bruscamente que las colisiones entre partículas fueron raras y de tan baja energía que las fuerzas eléctricas de repulsión entre los núcleos cargados positivamente impidieron la fusión. El resultado es

  •     mucho hidrogeno
  •     algo de helio (helio-4 normal)
  •     pequeños trozos de deuterio
  •     pedacitos de litio


de lo contrario no mucho.

Las cantidades relativas de hidrógeno, helio, deuterio y litio dependen muy sensiblemente de la densidad exacta de la materia en el universo durante esta ventana de oportunidad.

Hablaremos de esto más tarde.

El fondo cósmico de microondas


Durante los primeros minutos después del punto de partida, el universo estaba lo suficientemente caliente como para fusionar partículas en núcleos de helio. El resultado fue una proporción de aproximadamente 12 núcleos de hidrógeno por 1 núcleo de helio; esto corresponde a la afirmación de que las tres cuartas partes de la masa del universo eran núcleos de hidrógeno y una cuarta parte de la masa eran núcleos de helio.

Pero estos núcleos estaban completamente ionizados: carecían de la colección normal de electrones que los rodeaba. Los electrones podrían volar de forma independiente a través del espacio. Los electrones libres son muy eficientes en la dispersión de fotones. Cualquier rayo de luz, ondas de radio o rayos X en este plasma ionizado se dispersaron antes de que pudieran viajar lejos. El universo era opaco.

Después de algunos miles de años, mientras el universo continuaba expandiéndose y enfriándose, la temperatura alcanzó un punto crítico. Unos 100.000 años después del punto de partida, la temperatura descendió a unos 3.000 Kelvin.

En este momento, los núcleos de hidrógeno (protones) pudieron atrapar electrones y evitar colisiones. Llamamos a este proceso de captura de electrones recombinación (aunque en realidad fue la primera "combinación", no una re-"combinación").

El universo se volvió en gran parte neutral, con electrones unidos a átomos de hidrógeno y helio. Los átomos neutros son casi transparentes a los rayos de luz y las ondas de radio. De repente, el universo se volvió transparente.

Sonntag, 9. Januar 2022

Das Alter des Universums und der Big Bang (Urknall Hypothese)

Dieser Blogeintrag stammt aus mehreren englischsprachigen Blogs, z.B. https://nineplanets.org/questions/how-old-is-the-universe/
Der Artikel besteht aus zwei Abschnitten:
1. Abschnitt in Deutsch
2. Abschnitt in Español

Allgemeines

Wenn man das Alter aller Menschen, die jemals auf der Erde gelebt haben, berechnen könnte, würde es nicht einmal annähernd das Alter des Universums erreichen. Eines der am meisten diskutierten Themen in der Astronomie ist das Alter des Universums, und jedes Mal, wenn wir uns einer geschätzten Zahl nähern, kommt eine neue Entdeckung heraus und bläst diese weg.

Aber wie alt ist das Universum? Oder zumindest allgemein? Viele meinen, dass das Alter unseres Universums 13,8 Milliarden Jahre beträgt. Einige glauben, dass es noch älter ist, während andere es für jünger halten.

Die meisten Astronomen sind sich jedoch einig, dass unser Universum mindestens 13,8 Milliarden Jahre alt ist. Erwarten Sie jedoch nicht, dass diese Zahl lange anhält, da wir noch viel mehr zu lernen haben.

Woher wissen wir, dass das Universum 13,8 Milliarden Jahre alt ist?
 
Wir wissen es nicht, oder zumindest ist dies nur eine vorübergehende Zahl. Astronomen berechnen das Alter des Universums auf verschiedene Weise. Eine der beliebtesten Methoden, das Alter unseres Universums zu berechnen, besteht darin, die ältesten Sterne oder Galaxien, vielleicht sogar Planeten, zu finden.

Der älteste jemals entdeckte Planet ist beispielsweise Methusalem, der etwa 14,5 Milliarden Jahre alt ist, oder 800 Millionen Jahre. Dies ist ein Paradox, da es älter wäre als unser Universum. Sein Stern ist eindeutig noch älter als dieser Planet, da zuerst Sterne und später Planeten entstehen.

Eine der ältesten jemals entdeckten Galaxien ist GN-z11, die 32 Milliarden Lichtjahre von uns entfernt ist und auf ein Alter von mindestens 13,4 Milliarden Jahren geschätzt wird. 

Es wird vermutet, dass sie sich kurz nach dem Urknall gebildet hat. Astronomen berechnen das Alter des Universums, indem sie die Entfernungen und Radialgeschwindigkeiten anderer Galaxien analysieren. Dabei wird auch der kosmische Mikrowellenhintergrund berücksichtigt, da er ein Relikt der Strahlung des Urknalls ist.

Alles wird basierend auf dem Zurückspulen von Ereignissen bis zum Urknall berechnet. Eines ist jedoch sicher: über unser Universum ist nichts sicher. Sie werden wissen, was ich meine, wenn Sie weiterlesen.

Kann das Universum älter als 14 Milliarden Jahre sein?


Das Universum könnte durchaus älter als 14 Milliarden Jahre sein, und wir sollten aufhören, ihm jedes Mal Grenzen zu setzen, wenn etwas Neues entdeckt wird. Nehmen Sie zum Beispiel die Große Mauer von Hercules-Corona Borealis.

Dies ist eine der größten in unserem Universum entdeckten Strukturen. Es hat eine Länge von über 10 Milliarden Lichtjahren und befindet sich weit über 9 Milliarden Lichtjahre von uns entfernt.

Das beobachtbare Universum hat einen Durchmesser von 93 Milliarden Lichtjahren. Die Existenz der Großen Mauer von Hercules-Corona Borealis, ihre Größe, ist ziemlich umstritten.

Dies liegt daran, dass es zu groß ist, um sich in der Zeit, in der sein Licht uns erreicht hat, gebildet zu haben, und es könnte eines Tages durchaus noch ein Beweis auftreten, dass das Universum noch älter ist, als wir denken.

Diese große Struktur wird Wissenschaftlern für längere Zeit ein Rätsel bleiben. Einige bezweifeln sogar seine Existenz aufgrund seiner paradoxen Natur.

Aber selbst wenn wir die Existenz der Großen Mauer ausschließen, sind sich viele Wissenschaftler einig, dass unser Universum maximal 14,5 Milliarden Jahre alt sein sollte. Dies ist die Grenze für das Alter des Universums, aber es bleibt abzuwarten.

Was ist älter als das Universum?

Theoretisch scheint der Stern HD 140283 oder der Methusalem-Stern älter zu sein als unser Universum, aber das wäre unmöglich. Es ist entweder ein Rechenfehler oder ein Fehler des geschätzten Alters unseres Universums.

Egal wie man es betrachtet, nichts sollte älter sein als unser Universum, außer vielleicht etwas, das vor dem Urknall geschah. Wir wissen nicht genau, was vor dem Urknall war, aber was auch immer es war, wir könnten es zumindest theoretisch für etwas älter halten als unser Universum.

Der Urknall, das Ereignis, das unser Universum erschuf, wurde durch die Existenz einer anfänglichen Singularität ausgelöst, die an sich als älter als unser Universum angesehen werden könnte.

Eine andere Sache, die älter sein könnte als unser Universum, wäre die Existenz eines anderen Universums. Wenn wir jemals herausfinden, dass andere Universen außerhalb unseres eigenen existieren, könnten sie oder es jünger oder älter sein als unser Universum.

Nebenfrage: Wie alt ist die Erde im Vergleich zum Universum?

Unsere Erde ist nicht einmal der älteste Planet unseres Sonnensystems, das wäre Jupiter. Das Alter der Erde wird auf 4,54 Milliarden Jahre geschätzt, das Universum selbst ist also im Durchschnitt etwa dreimal so alt wie unsere Erde, aber nur, wenn das Universum tatsächlich 13,8 Milliarden Jahre alt ist.

Unsere Galaxie, die Milchstraße, könnte ein besserer Vergleich sein, da sie 13,51 Milliarden Jahre alt ist. Eines der ältesten jemals entdeckten Schwarzen Löcher wird auf 13,8 Milliarden Jahre geschätzt. Es entstand etwa 690 Millionen Jahre nach dem Urknall.

Beobachtete Grundlagen

Folgende Beobachtungen bzw. Messungen von astronomischen Eigenschaften lassen auf einen punktförmigen Ursprung des zu beobachteten Universums schließen (Urknallmodell):

1. Je weiter eine Galaxie von uns entfernt ist, umso schneller bewegt sie sich (gemessen an der Rotverschiebung der Spektrallinien

2. Eine chemische Beobachtung: Das Universum besteht in seiner Gesamtheit hauptsächlich aus H und He Atomen, alle anderen Elemente sind verschwindend gering vorhanden. Die H Atome sind in der Überzahl...

3. Der kosmische Mikrowellenhintergrund: Egal, wohin wir im Universum schauen, wir sehen Radiowellen, die aussehen wie die, die von einem schwarzen Körper bei etwa 2,7 Grad über dem absoluten Nullpunkt abgestrahlt werden. Es gibt winzige (ein Teil von 10.000) Variationen in der Helligkeit dieser Strahlung auf einer Skala von einem Grad.

Grundlagen des Urknallmodells 

Der Urknall basiert auf drei Hauptgrundsätzen: 

1. Das Universum war früher sehr heiß
2. Das Universum war früher sehr dicht
3. das Universum dehnt sich aus (deshalb ist es nicht mehr so heiß oder dicht)

Dazu sollte man wissen, dass dieses grundlegende Urknallmodell zu den folgenden Fragen NICHTS sagt:

  • Wird das Universum wieder zusammenbrechen oder sich für immer ausdehnen?
  • Ist der Raum gekrümmt oder flach?
  • Wie alt ist das Universum?
  • Wie hoch ist die Materiedichte im Universum?
  • Was ist mit dunkler Materie?
  • Gibt es eine mysteriöse "abstoßende" Kraft auf großen Skalen?
  • Wie sind Galaxien entstanden? 

https://upload.wikimedia.org/wikipedia/commons/thumb/6/6f/CMB_Timeline300_no_WMAP.jpg/660px-CMB_Timeline300_no_WMAP.jpg

Das Universum dehnt sich aus - oder umgekehrt: vor ca. 13,77 Milliarden Jahren war es nahezu punktförmig (https://en.wikipedia.org/wiki/Chronology_of_the_universe).

Unser Verständnis der Naturgesetze erlaubt es uns, den physikalischen Zustand des Universums bis zu einem bestimmten Punkt zurückzuverfolgen, als die Dichte und Temperatur WIRKLICH hoch waren. Darüber hinaus wissen wir nicht genau, wie sich Materie und Strahlung verhalten. Nennen wir diesen Moment den Ausgangspunkt. Es bedeutet nicht, dass das Universum zu dieser Zeit "begann", es bedeutet nur, dass wir nicht wissen, was vor diesem Zeitpunkt passiert ist.

Urknall-Nukleosynthese

Einer der wichtigsten Erfolge der Urknalltheorie ist ihre Erklärung der chemischen Zusammensetzung des Universums. Denken Sie daran, dass das Universum hauptsächlich aus Wasserstoff und Helium besteht, mit sehr kleinen Mengen schwerer Elemente. Was hat das mit dem Urknall zu tun?

Nun, vor langer Zeit war das Universum heiß und dicht. Wenn die Temperatur hoch genug ist (einige tausend Grad), verlieren Atome alle ihre Elektronen; wir nennen diesen Aggregatzustand, eine Mischung aus Kernen und Elektronen, ein vollständig ionisiertes Plasma. Ist die Temperatur noch höher (Millionen Grad), dann zerfallen die Kerne in Elementarteilchen, und man erhält eine "Suppe" aus Elementarteilchen:
  • Protonen
  • Neutronen
  • Elektronen
Wenn die "Suppe" nun sehr dicht ist, kollidieren diese Partikel häufig miteinander. Gelegentlich kleben Gruppen von Protonen und Neutronen zusammen, um Kerne leichter Elemente zu bilden ... aber unter extrem hohem Druck und extremer Temperatur werden die Kerne durch nachfolgende Kollisionen aufgebrochen. Die Urknalltheorie postuliert, dass das gesamte Universum einmal so heiß war, dass es mit dieser Proton-Neutron-Elektronen-Suppe gefüllt war.

Aber die Urknalltheorie besagt dann, dass mit der Expansion des Universums sowohl die Dichte als auch die Temperatur abnahmen. Mit abnehmender Temperatur und Dichte wurden die Kollisionen zwischen den Teilchen weniger heftig und seltener. Es gab ein kurzes "Fenster der Gelegenheit (window of opportunity)", in dem Protonen und Neutronen hart genug kollidieren konnten, um zusammenzukleben und leichte Kerne zu bilden, aber nicht so viele aufeinander folgende Kollisionen erleiden, dass die Kerne zerstört würden. Dieses "Fenster" erschien etwa drei Minuten nach dem Startpunkt und dauerte etwas weniger als eine Minute.

Welche Kerne würden sich unter diesen Bedingungen bilden? Experimente mit Teilchenbeschleunigern haben uns gezeigt, dass die meisten der möglichen Kerne instabil (unstable) sind, das heißt, sie brechen von selbst auf, oder sie sind zerbrechlich (fragile), was bedeutet, dass sie bei Kollisionen leicht zerbrochen werden.



Helium (die gewöhnliche Sorte mit 2 Protonen und 2 Neutronen) ist bei weitem der stabilste und robusteste zusammengesetzte Kern. Deuterium (ein Proton und ein Neutron) wird leicht zerstört, ebenso Helium-3 (2 Protonen, ein Neutron).

Es scheint also, dass diese Phase des heißen, dichten Plasmas viel Helium erzeugen würde. Könnte es auch andere, schwerere Elemente erzeugen?
 







 
 
 
 
Es stellt sich heraus, dass keiner der schwereren Kerne, die leicht durch Zusammenstöße einzelner Teilchen mit Heliumkernen oder Heliumkernen miteinander hergestellt werden, stabil oder robust ist. Fast alle Kerne, die schwerer als Helium sind, werden wahrscheinlich durch nachfolgende Kollisionen zerstört. Der einzige schwerere Kern, der möglicherweise überleben könnte, ist Lithium-7 (3 Protonen und 4 Neutronen), aber es erfordert die gleichzeitige Kollision eines Heliumkerns mit 2 oder 3 anderen Teilchen, was nicht sehr wahrscheinlich ist.
 
Detaillierte Modelle der Urknall-Nukleosynthese sagen voraus, dass das kurze "Fenster der Gelegenheit" nur ein oder zwei Minuten dauerte. Danach, etwa dreieinhalb Minuten nach dem Startpunkt, sanken Temperatur und Dichte so stark, dass Kollisionen zwischen Teilchen selten und von so geringer Energie waren, dass die elektrischen Abstoßungskräfte zwischen positiv geladenen Kernen die Fusion verhinderten. Das Ergebnis ist 
  • viel Wasserstoff 
  • etwas Helium (normales Helium-4)
  • kleine Deuteriumstücke
  • kleine Stückchen Lithium
sonst nicht viel.

Die relativen Mengen an Wasserstoff, Helium, Deuterium und Lithium hängen während dieses Gelegenheitsfensters sehr empfindlich von der genauen Dichte der Materie im Universum ab. Wir werden dies später besprechen.
 

Der kosmische Mikrowellenhintergrund

 
Während der ersten Minuten nach dem Startpunkt war das Universum also heiß genug, um Teilchen zu Heliumkernen zu verschmelzen. Das Ergebnis war ein Verhältnis von etwa 12 Wasserstoffkernen zu 1 Heliumkern; das entspricht der Aussage, dass drei Viertel der Masse des Universums Wasserstoffkerne und ein Viertel der Masse Heliumkerne waren.

Aber diese Kerne waren vollständig ionisiert: Ihnen fehlte die normale Ansammlung von Elektronen, die sie umgaben. Die Elektronen konnten selbstständig durch den Weltraum fliegen. Freie Elektronen sind sehr effizient bei der Streuung von Photonen. Alle Lichtstrahlen oder Radiowellen oder Röntgenstrahlen in diesem ionisierten Plasma wurden gestreut, bevor sie weit reisen konnten. Das Universum war undurchsichtig.
 
 
 
Nach einigen tausend Jahren, als sich das Universum weiter ausdehnte und abkühlte, erreichte die Temperatur einen kritischen Punkt. Ungefähr 100.000 Jahre nach dem Startpunkt fiel die Temperatur auf etwa 3.000 Kelvin.

Zu diesem Zeitpunkt waren Wasserstoffkerne (Protonen) in der Lage, Elektronen einzufangen und gegen Kollisionen zu halten. Wir nennen diesen Vorgang des Einfangens von Elektronen Rekombination (obwohl es wirklich die erste "Kombination" war, keine Re-"Kombination").

Das Universum wurde weitgehend neutral, mit Elektronen, die an Wasserstoff- und Heliumatome gebunden waren. Neutrale Atome sind für Lichtstrahlen und Radiowellen nahezu transparent. Plötzlich wurde das Universum transparent.


Samstag, 8. Januar 2022

NASA - Southern Ocean and Absorption of Carbon Dioxide

 https://climate.nasa.gov/news/3136/nasa-supported-study-confirms-importance-of-southern-ocean-in-absorbing-carbon-dioxide/?utm_source=newsletter&utm_medium=email&utm_campaign=monthly+newsletter

 

In Brief:

Research shows the Southern Ocean (the continuous body of salt water around Antarctica) absorbs much more carbon from the atmosphere than it releases. The findings confirm this ocean's role as a strong carbon sink and an important shield against some of the effects of human-caused greenhouse gas emissions. 

Article from Science:

Observations from research aircraft show that the Southern Ocean absorbs much more carbon from the atmosphere than it releases, confirming it is a very strong carbon sink and an important buffer for some of the effects of human-caused greenhouse gas emissions, according to a new NASA-supported study.

Recent research had raised uncertainty about just how much atmospheric carbon dioxide (CO2) these icy waters absorb. Those studies relied on measurements of ocean acidity – which increases when ocean water absorbs CO2 – taken by instruments that float in the ocean.

Source of information:
https://www.science.org/doi/10.1126/science.abi4355

Montag, 26. April 2021

vom MPI für terrestrische Mikrobiologie

Thomas Schwander,  Lennart Schada von Borzyskowski, Simon Burgener,
Niña Socorro Cortina,  Tobias J. Erb

 

Abstract:
Carbon dioxide (CO 2 ) is an important carbon feedstock for a future green economy.This requires the development of efficient strategies for its conversion into multicarbon compounds. We describe a synthetic cycle for the continuous fixation of CO 2 in vitro. The crotonyl–coenzyme A (CoA)/ethylmalonyl-CoA/hydroxybutyryl-CoA (CETCH) cycle is a reaction network of 17 enzymes that converts CO 2 into organic molecules at a rate of 5 nanomoles of CO 2 per minute per milligram of protein. The CETCH cycle was drafted by metabolic retrosynthesis, established with enzymes originating from nine different organisms of all three domains of life, and optimized in several rounds by enzyme engineering and metabolic proofreading. The CETCH cycle adds a seventh, synthetic alternative to the six naturally evolved CO 2 fixation pathways, thereby opening the way for in vitro and in vivo applications.

Inzwischen haben neue Versuche ergeben, dass dieser CETCH-Zyklus eine 20-fache Wirkung gegenüber der natürlichen Photosynthese hat. Allerdings ist dieser Prozess noch im Stadium des "Labormusters" (2021).

Freitag, 20. November 2020

CO2 - Ausstoß im Laufe der Zeit und Klimawandel (in Arbeit)

 Prof. Fritz Vahrenholdt (FV) wärmt mit neueren Videos seine These wieder auf, dass an dem Anstieg des CO2 in der Atmosphäre der Mensch nur zu ca. 50 % seinen Anteil hat. Diese Videos basieren auf dem neuen Buch von FV. Man sollte natürlich diese Argumente zunächst einmal ernst nehmen, da sie zum Teil sehr klug und in gewisser Weise auch sehr abgeklärt in einigen Interviews dargelegt werden. Nichtsdestoweniger muss jede Aussage hinterfragt werden. Das wollen wir hier tun.

Ich habe, angeregt durch einen Freund, der sehr viel von FV hält, zumindest was seine Persönlichkeit betrifft (ich kenne ihn nicht persönlich), mir vorgenommen, die wesentlichen Aussagen dieser Videos zu untersuchen und mit Quellen aus der Wissenschaft zu vergleichen. Da kommt doch einiges Überraschendes zutage.


Abb. 1 - Entwicklung der CO2-Konzentration der Atmosphäre während der letzten 40.000 Jahre

Die Konzentration an CO2 in der Atmosphäre ist seit den letzten 20.000 Jahren mit relativ konstanter Rate angestiegen (Ausnahme bildet die Zeit von ca. 10.000 bis 5.000 Jahren). Hierzu muss bemerkt werden, dass die Messung von CO2 in der Atmosphäre erst um 1958 begann, als Keeling mit dem Observatorium auf dem Berg Mauna Loa auf Hawaii mit den eigentlichen Messungen begann (s. Grafik). Die vor diesem Datum eingetragenen Werte basieren auf Messungen der eingeschlossenen Gasbläschen in Eisbohrkernen.




 

Abb. 2 - CO2-Konzentration, engmaschig gemessen auf dem Mauna Loa in Hawaii seit 1958 (Keeling-Kurve)

Ganz besonders auffällig ist der Anstieg in der allerneuesten Zeit seit kurz vor  1900. Das ist in etwa der Beginn des Industriezeitalters. Dieses wird im allgemeinen auf 1850 angesetzt. Vorher gab es die sogenannte "kleine Eiszeit". Man sieht deutlich einen signifikanten Anstieg vom vorindustriellen Wert von maximal ca. 280 ppm auf den heutigen Wert (2020) von über 400 ppm.

siehe auch Artikel




Ein künstlicher Photosyntheseprozess mit besserem "Wirkungsgrad" - aus Marburg ...

Das Max-Planck-Institut in Marburg für terrestrische Mikrobiologie hat ein Verfahren entwickelt, mit dem - labormäßig - ein neuer Photosynthesemechanismus (CETCH-Zyklus - https://www.researchgate.net/publication/321992119_Daring_metabolic_designs_for_enhanced_plant_carbon_fixation/figures?lo=1) entwickelt wurde, der nach den vorläufigen Ergebnisse etwa 20 mal so effektiv ist wie der natürliche Photosynthesprozess der Natur - (eine Liste der Veröffentlichungen findet man bei Researchgate.net: https://www.researchgate.net/profile/Tobias-Erb/research).

Ein "Zyklusmolekül¨ des Calvinzyklus generiert ca. 5-10 Moleküle O2 pro Sekunde und das neu entworfene Molekül des CETCH-Zyklus generiert ca. 80 Moleküle O2 pro Sekunde.

Das ist absolut revolutionär - im Prinzip steht die Welt bei Fuß, um diesen Prozess in großem Stil anzuwenden. Sicherlich gibt es einige Fallstricke bei der Anwendung, z.B. sollte man diesen Prozess nicht sich selbst überlassen, da dann die Gefahr besteht, dass soviel CO2 aus der Atmosphäre gebunden wird, dass der "gute" natürliche Treibhauseffekt "verloren" geht und die Erde dann zu einem Eisblock wird, was wir vor mehr als 600 Millionen Jahren hier schon mehrmals hatten (Snowball Earth).

 

Dienstag, 10. November 2020

Mass Extinction Events - PCE

A Little-Known Mass Extinction and the “Dawn of the Modern World”

 

 https://eos.org/articles/a-little-known-mass-extinction-and-the-dawn-of-the-modern-world&utm_campaign=ealert

 

Here also the book of Peter Brannen

The ends of the world ... 

Supervolcanoes, Lethal Oceans, and the Search for Past Apocalypses

As new groundbreaking research suggests that climate change played a major role in the most extreme catastrophes in the planet's history, award-winning science journalist Peter Brannen takes us on a wild ride through the planet's five mass extinctions and, in the process, offers us a glimpse of our increasingly dangerous future

Our world has ended five times: it has been broiled, frozen, poison-gassed, smothered, and pelted by asteroids. In The Ends of the World, Peter Brannen dives into deep time, exploring Earth’s past dead ends, and in the process, offers us a glimpse of our possible future.

Many scientists now believe that the climate shifts of the twenty-first century have analogs in these five extinctions. Using the visible clues these devastations have left behind in the fossil record, The Ends of the World takes us inside “scenes of the crime,” from South Africa to the New York Palisades, to tell the story of each extinction. Brannen examines the fossil record—which is rife with creatures like dragonflies the size of sea gulls and guillotine-mouthed fish—and introduces us to the researchers on the front lines who, using the forensic tools of modern science, are piecing together what really happened at the crime scenes of the Earth’s biggest whodunits.

Part road trip, part history, and part cautionary tale, The Ends of the World takes us on a tour of the ways that our planet has clawed itself back from the grave, and casts our future in a completely new light.

(https://www.goodreads.com/book/show/32075449-the-ends-of-the-world)


Freitag, 6. November 2020

Warming of Oceans

Earthquakes Reveal How Quickly the Ocean Is Warming

 

 https://eos.org/articles/earthquakes-reveal-how-quickly-the-ocean-is-warming?utm_source=eos&utm_medium=email&utm_campaign=EosBuzz100920

 

Stadtklima

Converging on Solutions to Plan Sustainable Cities

 

 https://eos.org/science-updates/converging-on-solutions-to-plan-sustainable-cities?utm_source=eos&utm_medium=email&utm_campaign=EosBuzz100920

Fotosynthese im Tropfen

https://www.mpg.de/14804169/tobias-erb-kuenstliche-fotoysnthese


Freitag, 9. Oktober 2020

Rückkopplungen im Klimasystem

Es gibt mehrere zum Teil einfache Prinzipien der Rückkopplung bei dem Klimawandel .


1. die Eis-Albedo-Rückkopplung

2. Die Rückkopplung im Zusammenhang mit den Schwankungen der Milankovitch Zyklen. Das geschieht so, dass einmal die Sonne die Atmosphäre und die Meere oberflächlich erwärmt. Die Meere transportieren diese Erwärmung in die Tiefe. Daraufhin wird mehr CO2 freigegeben. Das wiederum führt zu einer weiteren Erwärmung. Dadurch erklärt sich die Verzögerung der Kurven zwischen Temperatur und CO2-Gehalt bei den Eisbohrkernen. Konkret bei Vostok.


3. Wenn sich das Meerwasser erwärmt, gibt es mehr Wasserdampf ab. Dies kann in der erwärmten Atmosphäre ebenfalls mehr gehalten werden. Die Verdampfung von Wasser speichert viel Energie, nämlich ca 420 kilokalorien pro Kilogramm Wasser. Diese Energie und der höhere Wassergehalt der Luft führen zu extrem Ereignissen wie Starkregen und schweren Stürmen.

 

Und hier noch ein besonderer Fall: ENSO - El Niño - La Niñna im Jahre 2020

  https://www.focus.de/wissen/klima/la-nina-ist-zurueck-wie-die-gegenspielerin-von-el-nino-das-wetter-beeinflusst_id_12639345.html


Freitag, 2. Oktober 2020

Zugang zu wissenschaftlichen Zeitschriften (Open Access)

Es tut sich was ...

Howard Hughes unveils open-access policy

The Howard Hughes Medical Institute (HHMI), a powerful US research funder, is the country’s second major player to mandate that the research it pays for must be free to read on publication. HHMI joins the Bill & Melinda Gates Foundation in supporting Plan S, a European-led open-access initiative. HHMI’s new policy states that from 2022, its scientists must either make papers open access or deposit their accepted manuscripts in a repository openly under a liberal publishing licence.

Nature | 4 min read
und was wir noch lesen - siehe auch die Erwähnung der Bill und Melinda Gates Stiftung im Text:


The non-profit organization, based in Chevy Chase, Maryland, is only the second US funder to insist on immediate open access, after the Bill & Melinda Gates Foundation in Seattle, Washington. As part of the policy change, HHMI has joined the coalition of funders and organizations behind Plan S, a European-led initiative that is pushing for research to be immediately accessible on publication, and is supported by national research agencies and charitable organizations such as the Wellcome Trust and the Gates foundation. The HHMI’s shift is a boost to Plan S, and having more US-based funders on board will help build momentum towards open access, says Peter Suber, director of the Harvard Open Access Project and the Harvard Office for Scholarly Communication in Cambridge, Massachusetts.

USA zurück zum Klimaabkommen von Paris nach der Wahl von Biden

 Heute in Nature:

What Biden would mean for science

US presidential hopeful Joe Biden has promised to get back behind the World Health Organization, rejoin the Paris climate accord and push forward on an ambitious strategy to tackle the climate crisis. He has also pledged to reverse travel bans, award more visas to highly skilled workers and make it easier for foreign scientists and engineers who graduate with PhDs to permanently stay in the United States. Biden’s science-friendly platform sits in contrast to that of incumbent President Donald Trump, who has faced scathing criticism from scientists over issues such as his handling of the coronavirus pandemic, dismissal of climate science and distaste for environmental regulation, just to name a few. Nature interviewed current advisers to Biden, advisers who served during his tenure as vice-president under Barack Obama and policy analysts about actions Biden might take in five key science areas if he’s elected.

Nature | 13 min read  Ob das wohl so kommt? Nachdem Trump sich mit dem Corona-Virus infiziert hat und leichte Symptome zeigt (welche: https://www.webmd.com/lung/covid-19-symptoms#1), ist ja nicht so ganz klar, ob er noch weiter antritt. Ich hatte den Gedanken, dass er das zum Anlass nimmt, ohne Gesichtsverlust aus dem Geschäft auszusteigen. Denkbar ist diese Alternative. 

Mittwoch, 30. September 2020

Grace satellite

 https://climatedataguide.ucar.edu/climate-data/grace-gravity-recovery-and-climate-experiment-surface-mass-total-water-storage-and

The Gravity Recovery and Climate Experiment (GRACE) refers to a pair of NASA satellites that has flown in low-Earth orbit since 2002. The satellites use a precise microwave ranging system to measure the distance between themselves due to gravitational acceleration. Onboard GPS instruments determine the exact position of the satellites over the Earth. GRACE measures changes in Earth's gravity field, which are directly related to changes in surface mass. The surface mass signal largely reflects total water storage (TWS); over the ocean TWS is interpreted as ocean bottom pressure and on land it is the the sum of groundwater, soil moisture, surface water, snow and ice. On longer timescales, GRACE measurements can reflect post-glacial rebound. Large earthquakes can also lead to mass changes and anomalies in the gravity measurements.

 mit Hilfe von Google-Tranlate übersetzt:

Das Gravity Recovery and Climate Experiment (GRACE) bezieht sich auf ein Paar NASA-Satelliten, die seit 2002 in einer erdnahen Umlaufbahn geflogen sind. Die Satelliten verwenden ein präzises Mikrowellen-Entfernungsmesssystem, um den Abstand zwischen ihnen selbst aufgrund der Gravitationsbeschleunigung zu messen. Onboard-GPS-Instrumente bestimmen die genaue Position der Satelliten über der Erde. GRACE misst Änderungen im Schwerefeld der Erde, die in direktem Zusammenhang mit Änderungen der Oberflächenmasse stehen. Das Oberflächenmassensignal spiegelt weitgehend die gesamte Wasserspeicherung (TWS-total water storage) wider. über dem Ozean TWS wird als Meeresbodendruck interpretiert und an Land ist es die Summe aus Grundwasser, Bodenfeuchtigkeit, Oberflächenwasser, Schnee und Eis. Auf längeren Zeitskalen können GRACE-Messungen den postglazialen Rückprall widerspiegeln. Große Erdbeben können auch zu Massenänderungen und Anomalien bei den Schwerkraftmessungen führen.

Aerosols - a new approach to investigation and interpretation

 https://eos.org/articles/have-we-got-dust-all-wrong&utm_campaign=ealert

 

By Stav Dimitropoulos

The “Godzilla” Saharan dust plume that clouded over parts of the United States in June 2020 created a lot of talk and a lot of magnificent sunsets. Dust is an intriguing type of matter, vital for the formation of clouds and precipitation. We also know that if enough dust gathers in the atmosphere, it can block solar radiation. But what if some of these dust-related assumptions were slightly dusty—or completely wrong?

Members of the Remote Sensing of Aerosols, Clouds and Trace Gases (ReACT) team are trying to find out. The team, a group of atmospheric and climate scientists operating under the umbrella of the National Observatory of Athens (NOA), says the main reason for this “dust misconstruction” may be that we have failed to grasp the correct dust particle orientation in the first place.

Sonntag, 6. September 2020

Diesel- und Ottomotoren - Effizienz!

 

In Deutschland wird immer gesagt, bei den üblichen Kraftfahrzeugen sei es besser, solche mit Dieselmotoren zu benutzen. Das sei ökonomischer und daher besser. Gleichzeitig wird auch behauptet, dass der Diesel umweltfreundlicher sei gegenüber einem Fahrzeug mit Benzinmotor.

Ich wollte immer wissen, warum das so sei. Deshalb habe ich mir die kleine Mühe gemacht, mal etwas genauer hinzusehen, wo denn der Vorteil von Diesel sein könnte.

Hier gibt es dann folgende Aspekte, die untersucht werden können. Einmal gibt es den Aspekt des Feinstaubs, dann den der Produktion von NOx. Hier muss aber beachtet werden, dass Feinstaub und NOx im Prinzip lokale Verunreinigungen sind, die Produktion von CO2 aber global. Desweiteren spielen die Wirkungsgrade von Diesel- bzw. Ottomotoren eine Rolle

Für den Klimawandel relevant ist das CO2. Feinstaub und NOx haben gesundheitliche Implikationen, sicher also gefährlich für die Menschen, die lokal in der Nähe der Produktion von Feinstaub und NOx leben, die Produktion von CO2 hat aber die unangenehme Eigenschaft, dass dieses Gas sich aufgrund von Luftbewegungen (Winde) über den gesamten Globus verteilt und insofern alle Menschen betrifft. 

Hier also soll zunächst die Produktion von Kohlendioxid betrachtet werden. Um einen Vergleich von Benzin und Diesel durchzuführen, erschien es mir sinnvoll zu fragen:

1. Welche Menge an CO2 wird pro Liter Kraftstoff produziert?

2. Welche Menge an CO2 wird pro Kilogramm Kraftstoff produziert?

3. Welche Menge an CO2 wird pro Kilowattstunde bei dem jeweiligen Kraftstoff produziert?

 4. Wieviel km fährt ein Auto pro Kilogramm Diesel mehr als pro Kilogramm Benzin bei gleicher Bauform und gleichem Motor (es geht um die verschiedenen Wirkungsgrade von Dieselmotor und Benzinmotor)?

Zu 1 und 2.
Hier eine Zusammenfassung, Ergebnisse in Kurzform:

 Aber (Zitat):

Pkw mit Diesel­motoren galten lange als umwelt­freund­liche Alter­native zu Benzinern – zumindest in Deutsch­land. Aber spätestens seit Bekannt­werden der Abgas­skandale und der Diskussionen um Fahr­verbote ist es um das Image von Diesel­fahr­zeugen auch in Deutsch­land schlecht bestellt. Wie umwelt­freund­lich sind sie wirklich?

  • Zunächst einmal gilt: Diesel­motoren arbeiten effizienter und schaffen einen deutlich höheren Wirkungs­grad als Benzin­motoren.
  • Aller­dings sind Diesel-Pkw häufig schwerer. Dies führt dazu, dass Diesel-Fahr­zeuge durch­schnitt­lich kaum weniger CO2 ausstoßen, als Benziner. (Das muss genau hinterfragt werden und hängt sicher von jedem einzelnen Fahrzeugtyp ab).
  • Problematisch ist zudem, dass Diesel­motoren deutlich mehr Schad­stoff­e ver­ursachen. Diese bestehen vor allem aus Stick­oxiden, die gesund­heits­schädlich sind und Krebs ver­ursachen können. Neuste Dieselautos der Abgasstandards Euro 6d-TEMP und Euro 6d haben auch auf der Straße niedrige Stickstoffoxid-Emissionen. (Auch hier muss man bedenken, dass der Schadstoffausstoß - Feinstaub, NO2 etc. - eine geografisch begrenzte Kontamination ist (also eine lokale Angelegenheit), der CO2-Ausstoß allerdings global ist, er verteilt sich schnell über den gesamten Globus. Man kann also mit lokalen Maßnahmen gegen diese Schadstoffe angehen, im globalen Maßstab sind die Maßnahmen nicht so einfach, sie müssen international in mühsamen politischen Abstimmungsprozeduren durchgeführt werden. Und - wie oben erwähnt - die neuen Diesel (2020) haben sehr geringe Schadstoffemissionen.

Aus Sicht des Klimaschutzes spricht also nur wenig für einen Diesel. Bezogen auf die Gesundheit sprechen die Schadstoffemissionen sogar dagegen, es sei denn, ist ein Diesel der neuesten Klasse Euro 6d-TEMP und Euro 6d. Wichtigster Grund, sich dennoch für ein Dieselfahrzeug zu entscheiden, dürfte der geringere Treibstoffpreis sein. Dieser steht aber in der Regel einem höheren Preis für Neuwagen gegenüber. Und es gibt seitens der Regierung Überlegungen, die Mineralölsteuer für Diesel nach oben zu setzen.

Zu 4.


hier etwas zum Wirkungsgrad:

Wirkungsgrade Dieselmotor und Ottomotor

Laut dieser Informationsquelle hat der Ottomotor einen Wirkungsgrad von 25 % und der Dieselmotor einen Wirkungsgrad von 30 %.

Der Kraftstoffverbrauch ist beim Diesel deutlich geringer. Dies ist auf den besseren Wirkungsgrad zurück zu führen:

Diagram Wirkungsgrade Motoren Der Dieselmotor holt also 5% mehr Leistung aus der eingesetzten Energie wie der Ottomotor. Die restlichen 70% gehen ebenfalls als Abgaswärme, Kühlung und Reibung flöten, d.H. von 10 Litern Kraftstoff werden nur 3 Liter wirklich zur Fortbewegung genutzt.

Insgesamt sind die Wirkungsgrade von Verbrennungsmotoren sehr schlecht!

 

 

Dienstag, 25. August 2020

Mojib Latif

 

Klimawandel kompakt

Der Meteorologe Mojib Latif erklärt die Mechanismen des anthropogenen Klimawandels und hinterfragt, warum bisher so wenig dagegen unternommen wird.

 

Mojib Latif
Heißzeit
Verlag: Herder, Freiburg im Br. 2020
ISBN: 9783451386848 | Preis: 20,00 €
 
Wegen der Covid-19-Pandemie sind derzeit viele drängende Probleme in den Hintergrund geraten. Zu ihnen gehört der menschengemachte Klimawandel, der bis zum Ausbruch der Epidemie – befeuert von der Bewegung »Fridays for Future« – in den Medien sehr präsent war. Viele befürchten, die pandemiebedingte Wirtschaftskrise könnte mittelfristig zu Ausgabenkürzungen in allen möglichen Bereichen führen, einschließlich des Klimaschutzes. Der unfreiwillige Lockdown, die damit verbundene massive Ausweitung von Homeoffice und Homeschooling sowie die drastisch zurückgegangene Zahl der Flüge und Autofahrten haben andererseits gezeigt, dass es grundsätzlich möglich ist, die anthropogenen CO2-Emissionen sehr deutlich zu senken. Vielleicht führt dies zu einem Umdenken in Politik und Gesellschaft.
 

Epochaler Bezug

Der bekannte Meteorologe Mojib Latif vom GEOMAR Helmholtz-Zentrum für Ozeanforschung in Kiel hat nun dieses leicht verständliche Buch zum Thema vorgelegt. Auf 200 Seiten führt er einschlägige Fakten auf mit der Absicht, sie so zu zeigen, »wie sie sind«, ohne zu beschönigen und ohne zu dramatisieren. Als Buchtitel hat er das Wort des Jahres 2018 gewählt: »Heißzeit« – ein Begriff, der nicht nur auf den extrem heißen und trockenen Sommer 2018 anspielt, sondern durch die Ähnlichkeit zu »Eiszeit« einen epochalen Bezug bekommt.

Das Buch thematisiert mehr als nur die Ursachen und Folgen des Klimawandels. Diese nehmen lediglich etwa die Hälfte von »Heißzeit« ein, bevor der Autor im zweiten Teil nach den Gründen fahndet, warum Menschen – von Ausnahmen abgesehen – in Sachen Klimaschutz nur schwer dazu zu bewegen sind, ihr Verhalten zu ändern. Als wesentlichen Faktor identifiziert er die Entkopplung von Ursache und Wirkung. So machen sich die Folgen des anthropogenen Klimawandels bislang vor allem in Regionen bemerkbar, die besonders wenig zu den klimatischen Veränderungen beigetragen haben – allen voran in den Polargebieten und im Südpazifik. In den wohlhabenden, hoch entwickelten Staaten Europas, der USA und China dagegen, die zusammen den weitaus größten Teil der menschengemachten CO2-Emissionen verantworten, prägen sich die klimatischen Folgen langsam und für viele bisher kaum merklich aus. Gerade solche Länder stehen aber besonders in der Pflicht umzusteuern, zumal sie oft noch historisch am stärksten vom Raubbau an der Natur profitiert haben. In dem Zusammenhang beleuchtet Latif die organisierte Desinformation, um den menschengemachten Klimawandel zu verharmlosen oder zu leugnen – seit Jahrzehnten finanziell üppig unterstützt von der fossilen Brennstoffindustrie – sowie die Rolle, die Politik, Medien und Social Media dabei spielen.

Die Covid-Pandemie, der Latif ein eigenes Kapitel gewidmet hat, sieht er als Chance, die Weltwirtschaft grundsätzlich umzustellen, um mehr Fairness zwischen entwickelten und Schwellenländern zu erreichen. Dies solle sich, schreibt er, an Nachhaltigkeitskriterien orientieren; Wachstum und Ressourcenverbrauch müssten entkoppelt und die Energieversorgung umgebaut werden. Der Autor betrachtet die Coronakrise als eine Art Testfall für künftige krisenhafte Entwicklungen, die aus klimatischen Veränderungen folgen: Sie zeige etwa, wie verletzlich globale Lieferketten sind, wie schnell es bei stockendem Nachschub zu Verteilungskämpfen komme und wie wichtig internationale Zusammenarbeit sei. Zum Schluss spricht Latif konkrete Handlungsempfehlungen aus. So darf Klimaschutz seiner Ansicht nach nicht mehr als Einschränkung dargestellt werden. Dieser eröffne vielmehr den einzelnen Bürgern wie der Wirtschaft und Gesellschaft insgesamt neue Möglichkeiten.

Mit Blick auf derzeit populistisch regierte Länder wie die USA und Brasilien, aber auch auf China, dem mit einem Anteil von 28 Prozent weltweit größten CO2-Emittenten, befürwortet Latif eine »Allianz der Willigen«, in der Deutschland vorangehen solle. Seine Empfehlungen fasst der Klimaforscher am Ende des Buchs in einem 10-Punkte-Plan zusammen. »Heißzeit« ist ein Appell, dringend in Richtung Nachhaltigkeit umzusteuern, denn »ein kleines Zeitfenster bleibt der Menschheit noch, um das Ruder herumzureißen und eine Klimakatastrophe zu vermeiden.«

 Nachtrag von Jörg Kampmann:

Mojib Latif hat vor einigen Jahren (2015 ?) in Peine-Ilsede einen Vortrag gehalten und dabei ein von der NASA erstelltes Video gezeigt. Dieses ist sehr eindrucksvoll ...

 

 Es zeigt den Verlauf der Temperatur, verteílt über die ganze Erde, über mehr als die letzten hundert Jahre.


Diese beiden Videos sind vor einigen Jahren von der NASA veröffentlicht worden und lassen mich immer wieder schaudern darüber, wie wenig nachhaltig wir in der Vergangenheit unsere Erde behandelt haben. 


Inzwischen (22.08.2020) habe ich das Buch erhalten. Allein das Vorwort ist einen Kauf wert. Aber der Rest natürlich auch!

Mittwoch, 19. August 2020

Klimawissen und -unwissen - ein kurzer Dialog und ein paar Gedanken

 

Joerg Kampmann - Peine:

 

On 08.08.20 21:44, Wolf Tretter wrote:
https://kaltesonne.de/faz-welcher-kipppunkt-macht-ihnen-am-meisten-sorge-klimaforscher-marotzke-keiner/ 
Prof. Jochem Marotzke ist Leiter eines Instituts am MPI-Met in Hamburg.

 

Am 15.01.2019 um 20:27 schrieb Joerg Kampmann:


Eine Diskussion über den Klimawandel

[15.1., 00:05]

Kein Witz, Realität!!!

Robert Imberger - Studium der Reaktorphysik und Thermohydraulik an der FH Ulm:

Letzten Sonntag war ich auf einem örtlichen Weihnachtsmarkt. Dort gab es einen Stand zum Thema "Klimaschutz". Ich wurde als „Vorbeilaufender“ auf die CO2-Problematik auf unserer Welt angesprochen.
Ich dachte so bei mir… da bist Du gerade an den Richtigen gekommen.
Meine Frage an den Klima-Vertreter (ca. 28.-30J):

„Wie hoch ist denn der CO2-Anteil in der Luft?“
Seine Antwort: „Hoch! Sehr hoch! Viel zu hoch!“

Ich: „Wie hoch denn?“ – „Wie viel Prozent?“
Er: „Weiß ich nicht!“

Aha, dachte ich… ein wahrer Kenner!

Ich fragte also weiter: „Was ist denn sonst noch in der Luft?“
Er: „Sauerstoff!!!“
Ich: „Richtig! Und wie viel Prozent?“
„Weiß ich nicht!“ war seine Antwort.
Ich erklärte ihm, dass es wohl so um die 21% sind. Es erschien ihm plausibel.

Ich weiter: „Welche Gase sind denn sonst noch in der Luft enthalten?“
Kopfschütteln…. Schulterzucken…
Ich: „Edelgase! Argon, Xenon, Neon, Krypton…! Schon mal gehört? Die machen aber in Summe nur ein knappes Prozent aus!“
Nachdenkliches Staunen.

Ich wiederholte meine letzte Frage…
Wieder (inzwischen genervtes) Schulterzucken und Augenverdrehen…
Ich: „Schon mal was von Stickstoff gehört?“
„Ach ja, stimmt… Stickstoff!!! Ja, den haben wir auch in der Luft!“
Ich: „Und? Wie viel Prozent?“
Er: Wieder Schulterzucken. Ich spürte, dass er genug hatte von mir. Ich ließ aber nicht locker, erläuterte ihm, dass es ca. 78% wären. Seine in der linken Hand gehaltenen Flyer sanken immer tiefer.
Er, nach kurzem Kopfrechnen (gefühlte 60s) : „ Das kann nicht stimmen, das glaube ich Ihnen nicht, weil dann ja für CO2 nichts mehr übrig bleibt!!!“

Ich: „Eben! Sie haben Recht! Zumindest fast!!! Es sind nämlich nur 0,038% CO2 in unserer Atemluft! (Korrektur von JK _ 2018: 408 ppm [parts per million], also 0,0408 %)

Das glaubte er mir einfach nicht und ließ mich stehen.

----
Wer weiter rechnen möchte:
Wir haben 0,038% CO2 in der Luft. Davon produziert die Natur selbst etwa 96%. (das sollte verifiziert werden! [JK])
Den Rest, also 4%, der Mensch. Das sind 4% von 0,038%, also 0,00152%. (das sollte verifiziert werden! [JK])
Der Anteil von Deutschland ist hieran 3,1%.
Somit beeinflusst Deutschland mit 0,0004712% das CO2 in der Luft. (das sollte verifiziert werden! [JK])

Damit wollen wir die Führungsrolle in der Welt übernehmen, was uns jährlich an Steuern und Belastungen etwa 50 Milliarden Euro kostet.

Einfach mal drüber nachdenken
[15.1., 08:35]

Der Herr Imberger hat natürlich einen Gedankenfehler insinuiert. Er hat vergessen, dass das CO2 deswegen so klimawirksam ist, weil es starke Absorptionsbande im Infraroten hat. Und zweitens, weil weitere Gase, unter anderem Wasserdampf, in die Atmosphäre geraten, wenn sich die Temperatur erhöht. Auch Wasserdampf ist stark absorbierend im Infrarotbereich. Wenn allerdings 100 % Wasseerdampf in der Atmosphäre sind, dann regnet es. Es kommt nicht mehr hinzu!

Und wenn die Erde durch die Sonne erwärmt wird, ich meine die Oberfläche, dann strahlt die Erde sehr stark im Infrarotbereich. Und das wird von den bewussten Gasen absorbiert und zu etwa 50% wieder auf die Erdoberfläche zurück gestrahlt - die andere Hälfte geht nach oben. Das wiederum erwärmt die Oberfläche noch weiter. So einfach ist das .

Ohne diese Klimagase hätten wir auf der Erde eine Temperatur von ca -15 Grad Celsius. Das ist einfaches Stefan Boltzmann Gesetz. Eine der Grundlagen der Physik.

Es gibt noch einige andere Punkte, die man wissen sollte:

1. Die Argumentation, dass die Konzentration von CO2 doch so gering sei, dass das nichts ausmache! Tja, da kann man nur folgendes sagen:

1.1 Derzeit (2019) beträgt die Konzentration von CO2 in der Atmopsphäre 408 ppm, das ist also in Prozenten 0,0408 % - mit anderen Worten 1 ltr Luft enthält 0,408 cm³ CO2 ... dieses Gas ist extrem aktiv im Infraroten Bereich  (siehe Abb.). Das Maximum der Absorption liegt bei ca. 15 µm Wellenlänge.


Die Absorptionsspektren im Bereich von 0,2 bis 70 µm – Das rote Spektrum ist die Sonneneinstrahlung und das blaue die Infrarotstrahlung der Erde


Es gibt in Bezug auf Wirkmächtigkeit der Absorption eine Analogie in der Physik, und zwar im optischen Bereich. Man nehme 1 ltr Wasser und gebe dazu KMnO4 (Kaliumpermanganat). Jeder weiß, dieses Salz färbt ungeheuer. Wenn also in dieses Maß Wasser 0,408 cm³ KMnO4 gegeben wird, dann wird das Wasser sehr, sehr violett. Die Färbung ist ja schon sichtbar, wenn man statt der relativ großen Menge nur ein kleines Körnchen von ca. 1 mm³ eingibt. 


CO2 in der Luft wirkt so ähnlich aufs Gesamte Luftvolumen wie KMnO4 aufgelöst in Wasser. Der einzige Unterschied sind die verschiedenen Wellenlängenbereiche.  


Man muss der Vollständigkeit noch hinzufügen: die Energie, die im Infraroten von CO2 absorbiert wird, wird von den einzelnen CO2-Molekülen wieder ausgestrahlt, und zwar in alle Richtungen, man kann grundsätzlich sagen: die Hälfte der Strahlung geht nach oben in Richtung Weltall, die andere Hälfte wieder zurück zur Erde. Und auf diese Art wird die Oberfläche der Erde weiter erwärmt.


Wenn es keine Industrie usw. gäbe, so erhebt sich doch die Frage, wieviel CO2 atmet die Menschheit aus? - Ein Nullsummenspiel


Dazu folgende Überlegungen:

Beim Atmen in Ruhe produziert der Mensch an CO2 ca. 0.25 t/a. wenn er sich praktisch nicht sonderlich bewegt. Das Maximum könnte bei ca. 2 t/a liegen, wenn er pausenlos körperlich hart arbeitet. Daraus kann man den wahrscheinlichsten Wert von 0,5 t/a annehmen. 2016 gab es auf der Erde ca. 7 Milliarden Menschen. Multipliziert man den wahrscheinlichsten Wert mit dieser Anzahl Menschen, kommt man auf etwa 3,5 Gt/a ... Das ist eine beachtliche Menge CO2 ...In Deutschland liegt der Durchschnitt der CO2 Produktion bei ca. 10 - 11 Gt/a. Eine ähnliche Rechnung mit etwas kleineren Werten findet man hier.

Hier aber handelt sich um ein Nullsummenspiel! Denn das, was der Mensch ausatmet, nimmt er als bereits gebundenes CO2 (Pflanzen etc.) vorher auf. Und die Pflanzen etc. entfernen ja das CO2 vorher aus der Atmosphäre.

 

E-Mobilität

 Eine Mail von Wolf Tretter ... vom 09.08.2020:

Ich befasse mich grade mit dem Thema
https://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2019/2019-12-16-interview-stolten-wasserstoff.html?nn=2617554

ENSO - Erklärung für Laien - aus: Perspektive Daily

  Es ist das 17. Jahrhundert. Ein Fischer vor der Küste des heutigen Perus holt sein Netz ein. Kaum ein Fisch hat sich darin verfangen. Da...