Sonntag, 9. Januar 2022

Das Alter des Universums und der Big Bang (Urknall Hypothese)

Dieser Blogeintrag stammt aus mehreren englischsprachigen Blogs, z.B. https://nineplanets.org/questions/how-old-is-the-universe/
Der Artikel besteht aus zwei Abschnitten:
1. Abschnitt in Deutsch
2. Abschnitt in Español

Allgemeines

Wenn man das Alter aller Menschen, die jemals auf der Erde gelebt haben, berechnen könnte, würde es nicht einmal annähernd das Alter des Universums erreichen. Eines der am meisten diskutierten Themen in der Astronomie ist das Alter des Universums, und jedes Mal, wenn wir uns einer geschätzten Zahl nähern, kommt eine neue Entdeckung heraus und bläst diese weg.

Aber wie alt ist das Universum? Oder zumindest allgemein? Viele meinen, dass das Alter unseres Universums 13,8 Milliarden Jahre beträgt. Einige glauben, dass es noch älter ist, während andere es für jünger halten.

Die meisten Astronomen sind sich jedoch einig, dass unser Universum mindestens 13,8 Milliarden Jahre alt ist. Erwarten Sie jedoch nicht, dass diese Zahl lange anhält, da wir noch viel mehr zu lernen haben.

Woher wissen wir, dass das Universum 13,8 Milliarden Jahre alt ist?
 
Wir wissen es nicht, oder zumindest ist dies nur eine vorübergehende Zahl. Astronomen berechnen das Alter des Universums auf verschiedene Weise. Eine der beliebtesten Methoden, das Alter unseres Universums zu berechnen, besteht darin, die ältesten Sterne oder Galaxien, vielleicht sogar Planeten, zu finden.

Der älteste jemals entdeckte Planet ist beispielsweise Methusalem, der etwa 14,5 Milliarden Jahre alt ist, oder 800 Millionen Jahre. Dies ist ein Paradox, da es älter wäre als unser Universum. Sein Stern ist eindeutig noch älter als dieser Planet, da zuerst Sterne und später Planeten entstehen.

Eine der ältesten jemals entdeckten Galaxien ist GN-z11, die 32 Milliarden Lichtjahre von uns entfernt ist und auf ein Alter von mindestens 13,4 Milliarden Jahren geschätzt wird. 

Es wird vermutet, dass sie sich kurz nach dem Urknall gebildet hat. Astronomen berechnen das Alter des Universums, indem sie die Entfernungen und Radialgeschwindigkeiten anderer Galaxien analysieren. Dabei wird auch der kosmische Mikrowellenhintergrund berücksichtigt, da er ein Relikt der Strahlung des Urknalls ist.

Alles wird basierend auf dem Zurückspulen von Ereignissen bis zum Urknall berechnet. Eines ist jedoch sicher: über unser Universum ist nichts sicher. Sie werden wissen, was ich meine, wenn Sie weiterlesen.

Kann das Universum älter als 14 Milliarden Jahre sein?


Das Universum könnte durchaus älter als 14 Milliarden Jahre sein, und wir sollten aufhören, ihm jedes Mal Grenzen zu setzen, wenn etwas Neues entdeckt wird. Nehmen Sie zum Beispiel die Große Mauer von Hercules-Corona Borealis.

Dies ist eine der größten in unserem Universum entdeckten Strukturen. Es hat eine Länge von über 10 Milliarden Lichtjahren und befindet sich weit über 9 Milliarden Lichtjahre von uns entfernt.

Das beobachtbare Universum hat einen Durchmesser von 93 Milliarden Lichtjahren. Die Existenz der Großen Mauer von Hercules-Corona Borealis, ihre Größe, ist ziemlich umstritten.

Dies liegt daran, dass es zu groß ist, um sich in der Zeit, in der sein Licht uns erreicht hat, gebildet zu haben, und es könnte eines Tages durchaus noch ein Beweis auftreten, dass das Universum noch älter ist, als wir denken.

Diese große Struktur wird Wissenschaftlern für längere Zeit ein Rätsel bleiben. Einige bezweifeln sogar seine Existenz aufgrund seiner paradoxen Natur.

Aber selbst wenn wir die Existenz der Großen Mauer ausschließen, sind sich viele Wissenschaftler einig, dass unser Universum maximal 14,5 Milliarden Jahre alt sein sollte. Dies ist die Grenze für das Alter des Universums, aber es bleibt abzuwarten.

Was ist älter als das Universum?

Theoretisch scheint der Stern HD 140283 oder der Methusalem-Stern älter zu sein als unser Universum, aber das wäre unmöglich. Es ist entweder ein Rechenfehler oder ein Fehler des geschätzten Alters unseres Universums.

Egal wie man es betrachtet, nichts sollte älter sein als unser Universum, außer vielleicht etwas, das vor dem Urknall geschah. Wir wissen nicht genau, was vor dem Urknall war, aber was auch immer es war, wir könnten es zumindest theoretisch für etwas älter halten als unser Universum.

Der Urknall, das Ereignis, das unser Universum erschuf, wurde durch die Existenz einer anfänglichen Singularität ausgelöst, die an sich als älter als unser Universum angesehen werden könnte.

Eine andere Sache, die älter sein könnte als unser Universum, wäre die Existenz eines anderen Universums. Wenn wir jemals herausfinden, dass andere Universen außerhalb unseres eigenen existieren, könnten sie oder es jünger oder älter sein als unser Universum.

Nebenfrage: Wie alt ist die Erde im Vergleich zum Universum?

Unsere Erde ist nicht einmal der älteste Planet unseres Sonnensystems, das wäre Jupiter. Das Alter der Erde wird auf 4,54 Milliarden Jahre geschätzt, das Universum selbst ist also im Durchschnitt etwa dreimal so alt wie unsere Erde, aber nur, wenn das Universum tatsächlich 13,8 Milliarden Jahre alt ist.

Unsere Galaxie, die Milchstraße, könnte ein besserer Vergleich sein, da sie 13,51 Milliarden Jahre alt ist. Eines der ältesten jemals entdeckten Schwarzen Löcher wird auf 13,8 Milliarden Jahre geschätzt. Es entstand etwa 690 Millionen Jahre nach dem Urknall.

Beobachtete Grundlagen

Folgende Beobachtungen bzw. Messungen von astronomischen Eigenschaften lassen auf einen punktförmigen Ursprung des zu beobachteten Universums schließen (Urknallmodell):

1. Je weiter eine Galaxie von uns entfernt ist, umso schneller bewegt sie sich (gemessen an der Rotverschiebung der Spektrallinien

2. Eine chemische Beobachtung: Das Universum besteht in seiner Gesamtheit hauptsächlich aus H und He Atomen, alle anderen Elemente sind verschwindend gering vorhanden. Die H Atome sind in der Überzahl...

3. Der kosmische Mikrowellenhintergrund: Egal, wohin wir im Universum schauen, wir sehen Radiowellen, die aussehen wie die, die von einem schwarzen Körper bei etwa 2,7 Grad über dem absoluten Nullpunkt abgestrahlt werden. Es gibt winzige (ein Teil von 10.000) Variationen in der Helligkeit dieser Strahlung auf einer Skala von einem Grad.

Grundlagen des Urknallmodells 

Der Urknall basiert auf drei Hauptgrundsätzen: 

1. Das Universum war früher sehr heiß
2. Das Universum war früher sehr dicht
3. das Universum dehnt sich aus (deshalb ist es nicht mehr so heiß oder dicht)

Dazu sollte man wissen, dass dieses grundlegende Urknallmodell zu den folgenden Fragen NICHTS sagt:

  • Wird das Universum wieder zusammenbrechen oder sich für immer ausdehnen?
  • Ist der Raum gekrümmt oder flach?
  • Wie alt ist das Universum?
  • Wie hoch ist die Materiedichte im Universum?
  • Was ist mit dunkler Materie?
  • Gibt es eine mysteriöse "abstoßende" Kraft auf großen Skalen?
  • Wie sind Galaxien entstanden? 

https://upload.wikimedia.org/wikipedia/commons/thumb/6/6f/CMB_Timeline300_no_WMAP.jpg/660px-CMB_Timeline300_no_WMAP.jpg

Das Universum dehnt sich aus - oder umgekehrt: vor ca. 13,77 Milliarden Jahren war es nahezu punktförmig (https://en.wikipedia.org/wiki/Chronology_of_the_universe).

Unser Verständnis der Naturgesetze erlaubt es uns, den physikalischen Zustand des Universums bis zu einem bestimmten Punkt zurückzuverfolgen, als die Dichte und Temperatur WIRKLICH hoch waren. Darüber hinaus wissen wir nicht genau, wie sich Materie und Strahlung verhalten. Nennen wir diesen Moment den Ausgangspunkt. Es bedeutet nicht, dass das Universum zu dieser Zeit "begann", es bedeutet nur, dass wir nicht wissen, was vor diesem Zeitpunkt passiert ist.

Urknall-Nukleosynthese

Einer der wichtigsten Erfolge der Urknalltheorie ist ihre Erklärung der chemischen Zusammensetzung des Universums. Denken Sie daran, dass das Universum hauptsächlich aus Wasserstoff und Helium besteht, mit sehr kleinen Mengen schwerer Elemente. Was hat das mit dem Urknall zu tun?

Nun, vor langer Zeit war das Universum heiß und dicht. Wenn die Temperatur hoch genug ist (einige tausend Grad), verlieren Atome alle ihre Elektronen; wir nennen diesen Aggregatzustand, eine Mischung aus Kernen und Elektronen, ein vollständig ionisiertes Plasma. Ist die Temperatur noch höher (Millionen Grad), dann zerfallen die Kerne in Elementarteilchen, und man erhält eine "Suppe" aus Elementarteilchen:
  • Protonen
  • Neutronen
  • Elektronen
Wenn die "Suppe" nun sehr dicht ist, kollidieren diese Partikel häufig miteinander. Gelegentlich kleben Gruppen von Protonen und Neutronen zusammen, um Kerne leichter Elemente zu bilden ... aber unter extrem hohem Druck und extremer Temperatur werden die Kerne durch nachfolgende Kollisionen aufgebrochen. Die Urknalltheorie postuliert, dass das gesamte Universum einmal so heiß war, dass es mit dieser Proton-Neutron-Elektronen-Suppe gefüllt war.

Aber die Urknalltheorie besagt dann, dass mit der Expansion des Universums sowohl die Dichte als auch die Temperatur abnahmen. Mit abnehmender Temperatur und Dichte wurden die Kollisionen zwischen den Teilchen weniger heftig und seltener. Es gab ein kurzes "Fenster der Gelegenheit (window of opportunity)", in dem Protonen und Neutronen hart genug kollidieren konnten, um zusammenzukleben und leichte Kerne zu bilden, aber nicht so viele aufeinander folgende Kollisionen erleiden, dass die Kerne zerstört würden. Dieses "Fenster" erschien etwa drei Minuten nach dem Startpunkt und dauerte etwas weniger als eine Minute.

Welche Kerne würden sich unter diesen Bedingungen bilden? Experimente mit Teilchenbeschleunigern haben uns gezeigt, dass die meisten der möglichen Kerne instabil (unstable) sind, das heißt, sie brechen von selbst auf, oder sie sind zerbrechlich (fragile), was bedeutet, dass sie bei Kollisionen leicht zerbrochen werden.



Helium (die gewöhnliche Sorte mit 2 Protonen und 2 Neutronen) ist bei weitem der stabilste und robusteste zusammengesetzte Kern. Deuterium (ein Proton und ein Neutron) wird leicht zerstört, ebenso Helium-3 (2 Protonen, ein Neutron).

Es scheint also, dass diese Phase des heißen, dichten Plasmas viel Helium erzeugen würde. Könnte es auch andere, schwerere Elemente erzeugen?
 







 
 
 
 
Es stellt sich heraus, dass keiner der schwereren Kerne, die leicht durch Zusammenstöße einzelner Teilchen mit Heliumkernen oder Heliumkernen miteinander hergestellt werden, stabil oder robust ist. Fast alle Kerne, die schwerer als Helium sind, werden wahrscheinlich durch nachfolgende Kollisionen zerstört. Der einzige schwerere Kern, der möglicherweise überleben könnte, ist Lithium-7 (3 Protonen und 4 Neutronen), aber es erfordert die gleichzeitige Kollision eines Heliumkerns mit 2 oder 3 anderen Teilchen, was nicht sehr wahrscheinlich ist.
 
Detaillierte Modelle der Urknall-Nukleosynthese sagen voraus, dass das kurze "Fenster der Gelegenheit" nur ein oder zwei Minuten dauerte. Danach, etwa dreieinhalb Minuten nach dem Startpunkt, sanken Temperatur und Dichte so stark, dass Kollisionen zwischen Teilchen selten und von so geringer Energie waren, dass die elektrischen Abstoßungskräfte zwischen positiv geladenen Kernen die Fusion verhinderten. Das Ergebnis ist 
  • viel Wasserstoff 
  • etwas Helium (normales Helium-4)
  • kleine Deuteriumstücke
  • kleine Stückchen Lithium
sonst nicht viel.

Die relativen Mengen an Wasserstoff, Helium, Deuterium und Lithium hängen während dieses Gelegenheitsfensters sehr empfindlich von der genauen Dichte der Materie im Universum ab. Wir werden dies später besprechen.
 

Der kosmische Mikrowellenhintergrund

 
Während der ersten Minuten nach dem Startpunkt war das Universum also heiß genug, um Teilchen zu Heliumkernen zu verschmelzen. Das Ergebnis war ein Verhältnis von etwa 12 Wasserstoffkernen zu 1 Heliumkern; das entspricht der Aussage, dass drei Viertel der Masse des Universums Wasserstoffkerne und ein Viertel der Masse Heliumkerne waren.

Aber diese Kerne waren vollständig ionisiert: Ihnen fehlte die normale Ansammlung von Elektronen, die sie umgaben. Die Elektronen konnten selbstständig durch den Weltraum fliegen. Freie Elektronen sind sehr effizient bei der Streuung von Photonen. Alle Lichtstrahlen oder Radiowellen oder Röntgenstrahlen in diesem ionisierten Plasma wurden gestreut, bevor sie weit reisen konnten. Das Universum war undurchsichtig.
 
 
 
Nach einigen tausend Jahren, als sich das Universum weiter ausdehnte und abkühlte, erreichte die Temperatur einen kritischen Punkt. Ungefähr 100.000 Jahre nach dem Startpunkt fiel die Temperatur auf etwa 3.000 Kelvin.

Zu diesem Zeitpunkt waren Wasserstoffkerne (Protonen) in der Lage, Elektronen einzufangen und gegen Kollisionen zu halten. Wir nennen diesen Vorgang des Einfangens von Elektronen Rekombination (obwohl es wirklich die erste "Kombination" war, keine Re-"Kombination").

Das Universum wurde weitgehend neutral, mit Elektronen, die an Wasserstoff- und Heliumatome gebunden waren. Neutrale Atome sind für Lichtstrahlen und Radiowellen nahezu transparent. Plötzlich wurde das Universum transparent.


Keine Kommentare:

Kommentar veröffentlichen

Ein neuer Versuch Enzym Catalyse einzusetzen - aus Lodz (2024) - aus: Preprints.org

 Review Enzyme Catalysis for Sustainable Value Creation Using Renewable Biobased Resources Roland Wohlgemuth 1,2,3 1 MITR, Institute of App...