Esta entrada de blog proviene de varios blogs en inglés,
por ejemplo, https://nineplanets.org/questions/how-old-is-the-universe/
http://spiff.rit.edu/classes/phys240/lectures/bb/bb.html
El artículo consta de dos secciones:
1ra sección en alemán (https://ibk-klima.blogspot.com/2022/01/die-zu-beobachtenden-grundlagen-des-big.html)
2da sección en Español (esta seccion)
General
Si uno pudiera calcular la edad de todas las personas que alguna vez han vivido en la tierra, ni siquiera se acercaría a la edad del universo. Uno de los temas más discutidos en astronomía es la edad del universo, y cada vez que nos acercamos a un número estimado surge un nuevo descubrimiento que lo supera.
Pero, ¿cuántos años tiene el universo? ¿O al menos en general? Muchos creen que la edad de nuestro universo es de 13.800 millones de años. Algunos creen que es aún más antiguo, mientras que otros piensan que es más joven.
Sin embargo, la mayoría de los astrónomos están de acuerdo en que nuestro universo tiene al menos 13.800 millones de años. Sin embargo, no espere que este número dure mucho, ya que todavía tenemos mucho más que aprender.
¿Cómo sabemos que el universo tiene 13.800 millones de años?
No lo sabemos, o al menos es solo un número pasajero. Los astrónomos calculan la edad del universo de varias maneras. Una de las formas más populares de calcular la edad de nuestro universo es encontrar las estrellas o galaxias más antiguas, tal vez incluso planetas.
Por ejemplo, el planeta más antiguo jamás descubierto es Matusalén, que tiene alrededor de 14.500 millones de años, u 800 millones de años. Esto es una paradoja ya que sería más antiguo que nuestro universo. Su estrella es claramente incluso más antigua que este planeta, ya que las estrellas se forman primero y los planetas después.
Una de las galaxias más antiguas jamás descubiertas es GN-z11, que se encuentra a 32 000 millones de años luz de distancia y se estima que tiene al menos 13 400 millones de años.
Se cree que se formó poco después del Big Bang. Los astrónomos calculan la edad del universo analizando las distancias y velocidades radiales de otras galaxias. También se tiene en cuenta el fondo cósmico de microondas, ya que es una reliquia de la radiación del Big Bang.
Todo se calcula en base a eventos rebobinados hasta el Big Bang. Sin embargo, una cosa es segura: nada es seguro acerca de nuestro universo. Sabrás a lo que me refiero si sigues leyendo.
¿Puede el universo tener más de 14 mil millones de años?
El universo bien podría tener más de 14 mil millones de años, y deberíamos dejar de limitarlo cada vez que se descubre algo nuevo. Tome la Gran Muralla de Hércules-Corona Borealis, por ejemplo.
Esta es una de las estructuras más grandes descubiertas en nuestro universo. Tiene más de 10 mil millones de años luz de longitud y está a más de 9 mil millones de años luz de nosotros.
El universo observable tiene 93 mil millones de años luz de diámetro. La existencia de la Gran Muralla de Hércules-Corona Borealis, su tamaño, es bastante controvertida.
Esto se debe a que es demasiado grande para haberse formado en el momento en que su luz nos alcanzó, y un día bien puede haber evidencia de que el universo es incluso más antiguo de lo que pensamos.
Esta gran estructura seguirá siendo un misterio para los científicos durante mucho tiempo. Algunos incluso dudan de su existencia debido a su naturaleza paradójica.
Pero incluso si descartamos la existencia de la Gran Muralla, muchos científicos están de acuerdo en que nuestro universo no debería tener más de 14.500 millones de años. Este es el límite de la edad del universo, pero aún está por verse.
¿Qué es más antiguo que el universo?
En teoría, la estrella HD 140283 o Matusalén parece más antigua que nuestro universo, pero eso sería imposible. Es un error de cálculo o un error en la edad estimada de nuestro universo.
No importa cómo lo mires, nada debería ser más antiguo que nuestro universo, excepto tal vez algo que sucedió antes del Big Bang. No sabemos exactamente qué fue antes del Big Bang, pero sea lo que sea, al menos en teoría podríamos pensar que era un poco más antiguo que nuestro universo.
El Big Bang, el evento que creó nuestro universo, fue desencadenado por la existencia de una singularidad inicial que, en sí misma, podría considerarse más antigua que nuestro universo.
Otra cosa que podría ser más antigua que nuestro universo sería la existencia de otro universo. Si alguna vez descubrimos que existen otros universos fuera del nuestro, podría ser más joven o más viejo que nuestro universo.
Esto se debe a que es demasiado grande para formarse en el momento en que su luz nos alcanzó, y un día bien puede haber evidencia de que el universo es incluso más antiguo de lo que pensamos.
Esta gran estructura seguirá siendo un misterio para los científicos durante mucho tiempo. Algunos incluso dudan de su existencia debido a su naturaleza paradójica.
Pero incluso si descartamos la existencia de la Gran Muralla, muchos científicos están de acuerdo en que nuestro universo no debería tener más de 14.500 millones de años. Este es el límite de la edad del universo, pero aún está por verso.
Pregunta secundaria: ¿Qué edad tiene la tierra en comparación con el universo?
Nuestra tierra ni siquiera es el planeta más antiguo de nuestro sistema solar, ese sería Júpiter. La edad de la tierra se estima en 4540 millones de años, por lo que el universo en sí tiene en promedio unas tres veces la edad de nuestra tierra, pero solo si el universo tiene en realidad 13800 millones de años.
Nuestra galaxia, la Vía Láctea, podría ser una mejor comparación ya que tiene 13.510 millones de años. Se estima que uno de los agujeros negros más antiguos jamás descubiertos tiene 13.800 millones de años. Se originó alrededor de 690 millones de años después del Big Bang.
Bases observadas
Las siguientes observaciones o mediciones de propiedades astronómicas sugieren un origen puntual del universo observado (modelo del big bang):
1. Cuanto más lejos está una galaxia de nosotros, más rápido se mueve (medido por el corrimiento al rojo de las líneas espectrales
2. Una observación química: el universo en su totalidad se compone principalmente de átomos de H y He, todos los demás elementos son insignificantemente pequeños. Los átomos de H son mayoritarios...
3. El fondo cósmico de microondas: No importa dónde miremos en el universo, vemos ondas de radio que se parecen a las emitidas por un cuerpo negro a unos 2,7 grados sobre el cero absoluto. Hay variaciones minúsculas (parte en 10.000) en el brillo de esta radiación en una escala de un grado.
Fundamentos del modelo del big bang
El Big Bang se basa en tres principios fundamentales:
1. El universo solía estar muy caliente
2. El universo solía ser muy denso
3. el universo se expande (por eso ya no es tan caliente ni tan denso)
Debes saber que este modelo básico del Big Bang no dice NADA sobre las siguientes preguntas:
- Se colapsará el universo de nuevo o se expandirá para siempre?
- La habitación es curva o plana?
- cuantos años tiene el universo
- Cuál es la densidad de la materia en el universo?
- Qué pasa con la materia oscura?
- Existe una misteriosa fuerza "repulsiva" a gran escala?
- Cómo surgieron las galaxias?
El universo se está expandiendo, o viceversa: hace unos 13.770 millones de años tenía casi forma de punto (https://en.wikipedia.org/wiki/Chronology_of_the_universe).
Nuestra comprensión de las leyes de la naturaleza nos permite rastrear el estado físico del universo hasta un punto en el que la densidad y la temperatura eran REALMENTE altas. Además, no sabemos exactamente cómo se comportan la materia y la radiación. Llamemos a este momento el punto de partida. No significa que el universo "comenzó" en ese momento, solo significa que no sabemos qué sucedió antes de ese momento.
Nucleosíntesis del Big Bang
Uno de los mayores éxitos de la teoría del Big Bang es su explicación de la composición química del universo. Recuerda que el universo se compone principalmente de hidrógeno y helio, con cantidades muy pequeñas de elementos pesados. ¿Qué tiene esto que ver con el Big Bang?
Bueno, hace mucho tiempo el universo era caliente y denso. Cuando la temperatura es lo suficientemente alta (unos pocos miles de grados), los átomos pierden todos sus electrones; llamamos a este estado de la materia, una mezcla de núcleos y electrones, un plasma completamente ionizado. Si la temperatura es aún más alta (millones de grados), entonces los núcleos se desintegran en partículas elementales y se obtiene una "sopa" de partículas elementales:
- protones
- neutrones
- electrones
Cuando la "sopa" es muy densa, estas partículas suelen chocar entre sí. Ocasionalmente, grupos de protones y neutrones se unen para formar núcleos más fácilmente elementos... pero bajo presiones y temperaturas extremadamente altas, los núcleos se rompen por colisiones posteriores. La teoría del Big Bang postula que el universo entero alguna vez estuvo tan caliente que estaba lleno de esta sopa de protones, neutrones y electrones.
Pero la teoría del Big Bang dice que a medida que el universo se expandía, tanto la densidad como la temperatura disminuían. A medida que la temperatura y la densidad disminuyeron, las colisiones entre partículas se volvieron menos violentas e infrecuentes. Hubo una breve "ventana de oportunidad" en la que los protones y los neutrones podrían chocar lo suficientemente fuerte como para unirse y formar núcleos ligeros, pero no sufrir tantas colisiones consecutivas como para destruir los núcleos. Esta "ventana" apareció unos tres minutos después del punto de inicio y tomó un poco menos de un minuto.
¿Qué núcleos se formarían en estas condiciones? Los experimentos con aceleradores de partículas nos han demostrado que la mayoría de los núcleos posibles son inestables (unstable), es decir, se abren solos, o son frágiles (fragile), lo que significa que se rompen fácilmente en colisiones.
El helio (la variedad común de 2 protones y 2 neutrones) es, con mucho, el núcleo compuesto más estable y robusto. El deuterio (un protón y un neutrón) se destruye fácilmente, al igual que el helio-3 (2 protones, un neutrón).
Entonces parece que esta fase de plasma caliente y denso generaría mucho helio. ¿Podría producir también otros elementos más pesados?
Resulta que ninguno de los núcleos más pesados, formados fácilmente por la colisión de partículas individuales con núcleos de helio o núcleos de helio, es estable o robusto. Es probable que casi todos los núcleos más pesados que el helio sean destruidos por colisiones posteriores. El único núcleo más pesado que podría sobrevivir es el litio-7 (3 protones y 4 neutrones), pero requiere un núcleo de helio para colisionar con otras 2 o 3 partículas al mismo tiempo, lo cual no es muy probable.
Los modelos detallados de la nucleosíntesis del Big Bang predicen que la breve "ventana de oportunidad" duró solo uno o dos minutos. Después de eso, unos tres minutos y medio después del punto de partida, la temperatura y la densidad cayeron tan bruscamente que las colisiones entre partículas fueron raras y de tan baja energía que las fuerzas eléctricas de repulsión entre los núcleos cargados positivamente impidieron la fusión. El resultado es
- mucho hidrogeno
- algo de helio (helio-4 normal)
- pequeños trozos de deuterio
- pedacitos de litio
de lo contrario no mucho.
Las cantidades relativas de hidrógeno, helio, deuterio y litio dependen muy sensiblemente de la densidad exacta de la materia en el universo durante esta ventana de oportunidad.
Hablaremos de esto más tarde.
El fondo cósmico de microondas
Durante los primeros minutos después del punto de partida, el universo estaba lo suficientemente caliente como para fusionar partículas en núcleos de helio. El resultado fue una proporción de aproximadamente 12 núcleos de hidrógeno por 1 núcleo de helio; esto corresponde a la afirmación de que las tres cuartas partes de la masa del universo eran núcleos de hidrógeno y una cuarta parte de la masa eran núcleos de helio.
Pero estos núcleos estaban completamente ionizados: carecían de la colección normal de electrones que los rodeaba. Los electrones podrían volar de forma independiente a través del espacio. Los electrones libres son muy eficientes en la dispersión de fotones. Cualquier rayo de luz, ondas de radio o rayos X en este plasma ionizado se dispersaron antes de que pudieran viajar lejos. El universo era opaco.
Después de algunos miles de años, mientras el universo continuaba expandiéndose y enfriándose, la temperatura alcanzó un punto crítico. Unos 100.000 años después del punto de partida, la temperatura descendió a unos 3.000 Kelvin.
En este momento, los núcleos de hidrógeno (protones) pudieron atrapar electrones y evitar colisiones. Llamamos a este proceso de captura de electrones recombinación (aunque en realidad fue la primera "combinación", no una re-"combinación").
Keine Kommentare:
Kommentar veröffentlichen